
CONTENTS

Font technologies and data formats

What programming interfaces are supported?

What are the differences in the data types?

Using the data access functions

Using font names

Using the standard font menus

Is there notification of changes to the font database?

Changes required when working with the Resource Manager

Changes required when working with Quickdraw

Downloadables

The Font Manager on Mac OS X offers
advanced features with a simplicity of design
that makes it easy to support an extensive
range of font technologies and data formats.
The programming interface is designed with
performance, scalability, and consistency in
mind, and is available to Cocoa and Carbon
applications through the Apple Type Services
(ATS) framework and Quickdraw framework
on Mac OS X.

 Updated: [Jul 11 2001]

How are fonts installed?

Installing fonts is a simple process of copying or moving files to any of the standard font directories of the file system on
Mac OS X. Note that the directories of the file system are arranged so that resources local to the user's computer are
segregated from those on the network, and, on a computer, system resources are segregated from those under the control of
the user or system administrator. Applications, documents, fonts, and other resources should go in one of several file-
system domains. The domain is an area of the file system segregated from other domains and with structural elements
identical to other domains.

Changes to the font directories are registered with the operating system when an application is launched or a user logs in to
the account or computer on which the changes occurred. Duplicate fonts are resolved based on the order of precedence
defined for the standard domains and are described from highest to lowest priority in Table 1.

~/Library/Fonts (User)

The User domain is specific to the user who is logged into the system and is associated with the user's home
directory, which can either be on the boot volume or on the network. The user has complete control over the
contents of this domain.

/Library/Fonts (Local)

The Local domain is for fonts shared among all users of a particular computer and not required by the operating
system to run. Users with system administrator privileges can add, remove, and modify items in this domain,
which is also the recommended location for fonts that are shared among applications.

/Network/Library/Fonts (Network)

The Network domain is for fonts shared among all users of a local area network. The contents of this domain are
typically located on network file servers and are under the control of a network administrator.

/System/Library/Fonts (System)

The System domain contains the default fonts required by the operating system to run and should not be altered.

[Classic System Folder]/Fonts (Classic)

The Fonts folder of the user's preferred Classic System folder is the domain with the lowest precedence of all
the font directories and is registered with the operating system even when the Classic compatibility

environment is not running. Note that for applications running in the Classic compatibility environment the
inverse is not true, and none of the other domains besides the Fonts folder in the Classic System folder are
available.

 Font directories and standard domains.Table 1.

The domain in which a font is placed defines the scope of applicability or accessibility for that font. For example, if a user
installs a custom font in the user domain, the font is available only to that user. If an administrator installs the same font
in the network domain, the font is available to everyone on the network.

The ownership and permissions model of the file system is fundamentally different on Mac OS X from previous releases of
the operating system. This difference affects how you install and use fonts. For each file and directory in the file system
there are three categories of users (owner, group, and other), and for each type of user there are three specific
permissions that affect access to the file or directory (read, write, and execute). When you install a font, check that the
permissions of the files associated with the font are set to enable read access for the appropriate categories of users for the
domain.

Back to top

Font technologies and data formats

The font technologies and data formats supported for rendering, print-preview, and printing on Mac OS X are listed in
Table 2.

Macintosh TrueType font suitcase

Windows TrueType TTF/TTC outline/bitmapped font

PostScript OpenType Roman outline/bitmapped font

PostScript OpenType CID Chinese/Japanese/Korean/Vietnamese outline/bitmapped font

PostScript Type 1 outline font with Macintosh bitmapped font suitcase (LWFN)

Macintosh PostScript Type 1 enabled font suitcase (SFNT)

Macintosh PostScript Type 1 CID enabled font suitcase (SFNT/CID).

 Font technologies and data formats.Table 2.

Note that PostScript Type 1 Multiple Master fonts are not yet supported on Mac OS X.

The contents of the .dfont file format used with all the standard TrueType system fonts on Mac OS X are identical to the
standard font suitcase files, except that the font resources are stored in the data fork of the file. On Mac OS X, the
bitmapped font resources are not supported, although the bitmapped font resources are supported for Quickdraw
applications. Font families consisting entirely of bitmapped font resources are ignored by non-Quickdraw
applications based on Cocoa, Apple Type Services for Unicode™ Imaging (ATSUI), and Multilingual Text Editor (MLTE), and
cannot be applied to user interface elements such as menus, windows, and static and editable text controls.

'FONT'
'NFNT'

'NFNT'

When support was first provided on Mac OS for Chinese/Japanese/Korean/Vietnamese fonts, it was necessary to introduce
a new format for bitmapped fonts to replace the and resource formats. Fonts in the new format were
referred to as fonts, in which basic information on the font continued to reside in the resource but the
bitmapped data resided in an external file. There are no plans to support the (marukan) packaging format on Mac
OS X, and font developers and users must convert to using an alternate bitmapped font format () associated with
TrueType and OpenType fonts.

'FONT' 'NFNT'
'fbit' 'FOND'

'fbit'
'sbit'

Back to top

What programming interfaces are supported?

The programming interface defined by the ATS framework on Mac OS X consolidates the font-related functions designed and
implemented for optimal performance and compatibility with the other components of the operating system, including
Quartz, Quickdraw, Cocoa, and ATSUI. The functions declared in the interface files of the ATS framework are not available
on CarbonLib for CFM based applications. To use these functions from a CFM-based applications you need to link against
CarbonFrameworkLib or use the techniques described in the sample code from the Carbon SDK.CallMachOFramework

The extended Font Manager functions first implemented on Mac OS 9.0 are exported by the Quickdraw framework on Mac OS
X for dyld-based applications and by the Carbon framework and CarbonLib for CFM based applications. The programming
interface provides a migration path to Mac OS X for Carbon applications and is described in the developer
documentation. The functions are not available on earlier releases of the system software, including Mac OS 8.6 and any
version of CarbonLib installed on those system software releases. To check if the extended Font Manager functions are
implemented you can verify that the address of any exported symbol from the programming interface has been resolved by
the Code Fragment Manager as described in Listing 1.

Font Manager

if ((UInt32)kUnresolvedCFragSymbolAddress != (UInt32)FMGetGeneration)

... // The extended Font Manager API is implemented.

 A source code listing to check if the extended Font Manager functions are implemented.Listing 1.

Back to top

What are the differences in the data types?

The base types for (opaque 32-bit value) and (signed 16-bit integer) are
different, so you should avoid type casting or implicit type promotion when working with these data types. Instead, use the
conversion functions defined for the font family references by the Quickdraw framework to protect your software from any
changes or differences in the way these two data types are generated.

ATSFontFamilyRef FMFontFamily

 and are equivalent data types that may be used interchangeably with the functions provided by the
Font Manager and ATSUI in the Quickdraw framework. You must still use the conversion functions defined for the font
references by the Quickdraw framework when handling the data type.

FMFont ATSUFontID

ATSFontRef

Back to top

Using the data access functions

You can learn more about the information accessible through the functions and
 from the TrueType specification defined in the , and the

OpenType specification described in the and
 web sites.

FMGetFontTable
FMGetFontTableDirectory TrueType Reference Manual

Adobe Type Technology Technical Resources Microsoft Typography Technical
Information

The function returns values misleadingly labeled as font technologies in the interface file Fonts.h, of
the Quickdraw framework. The () format tag is reserved for TrueType fonts.
The () format tag indicates the class of PostScript fonts that consist of a
single font resource () that matches the data format used in TrueType and OpenType fonts. The font data is located
in the data tables specified and tagged for the particular font technology. An example is the PostScript CID-Keyed SFNT font
file format described in the . The additional font format tag, , represents the
traditional packaging format for PostScript Type 1 fonts on Mac OS (i.e., bitmapped font suitcase with one or more
auxiliary PostScript outline files).

FMGetFontFormat
kFMTrueTypeFontTechnology 'true'

kFMPostScriptFontTechnology 'typ1'
'sfnt'

Adobe Font Technical Note 5180 'LWFN'

The function provides a reference to the font suitcase rather than the PostScript outline file for
 class fonts. This means that there is no single function implemented to obtain the data stored in the PostScript

outline file.

FMGetFontContainer
'LWFN'

Back to top

Using font names

The PostScript name located in the resource or the table of the TrueType and OpenType fonts is used as a
persistent reference to a font by Quartz and other PostScript-based software like that used in LaserWriter printers. The
font family, font, and sub-family names located in the table define the entries in the font panel provided by Cocoa
applications.

'FOND' 'name'

'name'

The Quickdraw name provided by (or) was originally the resource name of the
 resource of the font family. It is used in Quickdraw applications as a persistent reference to the font family and

also in user interface in the Fonts menu generated from the function. Note that you also need the
Quickdraw style to specify a component font in the font family.

GetFontName FMGetFontFamilyName
'FOND'

AppendResMenu

Back to top

Using the standard font menus

There is a problem in the standard font menu functions described in the chapter in the Font Manager documentation on
 TrueType variation fonts like Skia and Hoefler Text may not work properly for the

hierarchical form of the standard font menu in Quickdraw applications.
"Handling the Standard Font Menu".

Back to top

Is there notification of changes to the font database?

There is no support at this time for notification of changes to the font database, but you can poll for changes to the
generation counter as described in the documentation of the Font Manager on the data type.FMGeneration

Back to top

Changes required when working with the Resource Manager

On Mac OS X, the font files are not accessible through a globally shared system resource chain and may not even contain
font data in the resource fork of the file. You cannot depend on Resource Manager functions like and

 to access the information stored in the font files. Instead, you should use the general data access functions
GetResource

GetResInfo

defined in the ATS and Quickdraw frameworks, which have been designed to work independently of the file formats and
technologies of the fonts. The functions defined by the ATS framework that provide information that corresponds most
closely to the data stored in the resource include: ,

, , and . Note that the
function does not provide the overall font family metrics located in the
resource and is based instead on the data tables stored in the component fonts.

'FOND' ATSFontFamilyFindFromName
ATSFontFamilyGetName ATSFontFamilyGetEncoding ATSFontGetPostScriptName

ATSFontGetHorizontalMetrics 'FOND'

For additional information on adapting resource-based source code for Mac OS X, refer to the chapter in the Font Manager
documentation on "Rewriting Resource-based Code".

The function defined in the interface file ATSFont.h, of the ATS framework lets you
access the contents of the resource that references a particular font. The function copies the contents of the

 resource to a data buffer that you must allocate prior to using the function. If you call
 with the data buffer parameter set to nil, the size of the buffer required to hold

the resource data will be returned in the buffer size parameter. You can then use this information to allocate the
required buffer.

ATSFontGetFontFamilyResource
'FOND'

'FOND'
ATSFontGetFontFamilyResource

'FOND'

To access other font resources of a Macintosh TrueType font suitcase, including the outline () and bitmapped
 () font resources, use to obtain a file reference that may be passed to the Resource
Manager functions to open the file and access the resource data directly. The source code listing in Listing 2 provides basic
support for accessing the resource on Mac OS X and Mac OS 9. Note that the sample code is dependent on the
extended Font Manager functions and will not work on earlier releases of the system software that do not support this
programming interface.

'sfnt'
'NFNT' FMGetFontContainer

'FOND'

OSStatus GetFontFamilyResource(FMFontFamily iFontFamily, Handle* oHandle) {
 FMFont font;
 Str255 fontFamilyName;
 SInt16 rsrcFRefNum;
 Handle rsrcHandle;
 FSSpec rsrcFSSpec;
 FSRef rsrcFSRef;
 HFSUniStr255 forkName;
 OSStatus status;

 font = kInvalidFont;
 rsrcFRefNum = -1;
 rsrcHandle = NULL;
 status = noErr;

 /* Get the font family name to use with the Resource
 Manager when grabbing the 'FOND' resource. */
 status = FMGetFontFamilyName(iFontFamily, fontFamilyName);
 require(status == noErr, FMGetFontFamilyName_Failed);

 /* Get a component font of the font family to obtain
 the file specification of the container of the font
 family. */
 status = FMGetFontFromFontFamilyInstance(iFontFamily, 0, &font, nil);
 require(status == noErr && font != kInvalidFont,
 FMGetFontFromFontFamilyInstance_Failed);

 status = FMGetFontContainer(font, &rsrcFSSpec);
 require(status == noErr, FMGetFontContainer_Failed);

 /* Open the resource fork of the file. */
 rsrcFRefNum = FSpOpenResFile(&rsrcFSSpec, fsRdPerm);

 /* If the font is based on the ".dfont" file format,
 we need to open the data fork of the file. */
 if (rsrcFRefNum == -1) {
 /* The standard fork name is required to open
 the data fork of the file. */
 status = FSGetDataForkName(&forkName);
 require(status == noErr, FSGetDataForkName_Failed);

 /* The file specification (FSSpec) must be converted
 to a file reference (FSRef) to open the data fork
 of the file. */
 status = FSpMakeFSRef(&rsrcFSSpec, &rsrcFSRef);
 require(status == noErr, FSpMakeFSRef_Failed);

 status = FSOpenResourceFile(&rsrcFSRef,
 forkName.length, forkName.unicode,
 fsRdPerm, &rsrcFRefNum);

 require(status == noErr, FSOpenResourceFile_Failed);
 }

 UseResFile(rsrcFRefNum);

 /* On Mac OS X, the font family identifier may not
 match the resource identifier after resolution of
 conflicting and duplicate fonts. */
 rsrcHandle = Get1NamedResource(FOUR_CHAR_CODE('FOND'), fontFamilyName);
 require_action(rsrcHandle != NULL,
 Get1NamedResource_Failed, status = ResError());

 DetachResource(rsrcHandle);

Get1NamedResource_Failed:

 if (rsrcFRefNum != -1)
 CloseResFile(rsrcFRefNum);

FSOpenResourceFile_Failed:
FSpMakeFSRef_Failed:
FSGetDataForkName_Failed:
FMGetFontContainer_Failed:
FMGetFontFromFontFamilyInstance_Failed:
FMGetFontFamilyName_Failed:

 if (oHandle != NULL)
 *oHandle = rsrcHandle;

 return status;
}

 A source code listing to access the font information stored in a resource-based font suitcase file.Listing 2.

You cannot assume that converting a font family instance to a font reference using the function
, then applying the inverse operation using the function
 results in the original font family instance. This problem is most apparent

when you work with fonts referenced by multiple font families. It can also occur in functions like
 and that implicitly convert a font reference to a font

family instance. You can adjust for any differences in the font family instance that you obtain by determining its effective
style based on the intrinsic style provided by the conversion function as
described in Listing 3.

FMGetFontFromFontFamilyInstance
FMGetFontFamilyInstanceFromFont

ATSFontGetFontFamilyResource FMGetFontContainer

FMGetFontFromFontFamilyInstance

FMGetFontFromFontFamilyInstance(originalFamily, originalStyle,
 &font, &intrinsicStyle);

remainingStyle = originalStyle & ~intrinsicStyle;

FMGetFontFamilyInstanceFromFont(font, &newFamily, &newStyle);
if (newFamily != originalFamily)
 effectiveStyle = newStyle | remainingStyle;
else
 effectiveStyle = originalStyle;

 A source code listing to handling fonts referenced by multiple font families.Listing 3.

This listing assumes that the font family selected by is consistent with the one
selected by the data access functions. If not, you must enumerate the instances of the new font family and look for a strike
that references the font to compute the required style adjustments.

FMGetFontFamilyInstanceFromFont

On Mac OS X, the Resource Manager does not automatically activate fonts stored in the resource fork of the application file.
Use (in Fonts.h of the Quickdraw framework) or

 (in ATSFont.h of the ATS framework) with the file specification of the
application to activate any fonts stored in the resource fork of that file.

FMActivateFonts
ATSFontActivateFromFileSpecification

The function has been modified to work with all supported data formats and particularly with non-resource
fork based fonts, including PostScript OpenType and Windows TrueType fonts.

AddResMenu

Back to top

Changes required when working with Quickdraw

On Mac OS X, you can continue using the Font Manager routine, , to access the font information generated by
Quickdraw but you will not have access to the fields of any data structure that reference a resource-based data handle. This

FMSwapFont

includes the field of the data structure and the and fields of the
 data structure which are set to by the Font Manager.

fontHandle FMOutput tabFont fHand
WidthTable NULL

If the framework has not been initialized, functions like and cannot access
script system data for the default system fonts and set the return value to zero. The solution is to reference a function in
your application that is exported by the , like .

HIToolbox GetSysFont GetAppFont

HIToolbox GetApplicationTextEncoding

Downloadables

Acrobat version of this Note (56K). Download

Back to top

Technical Notes by | | | |
 | | |

API Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

